HERBICIDES AND FUNGICIDES STIMULATE Ca²⁺ EFFLUX FROM RAT LIVER MITOCHONDRIA

Cornelia HERTEL, Hartmut QUADER⁺, David G. ROBINSON⁺, Isabelle ROOS[†], Ernesto CARAFOLI[†] and Dieter MARMÉ

Institut für Biologie III, University of Freiburg, Schänzlestrasse 1, 7800 Freiburg, ⁺Pflanzenphysiologisches Institut der Universität, 3400 Göttingen, FRG and [†]Laboratory of Biochemistry, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland

Received 27 February 1981; revised version received 6 March 1981

1. Introduction

Through work on the regulation of microfibril orientation in the algae *Oocystis* [1] and on flagellar regeneration in *Chlamydomonas* [2] it has become clear that the herbicides amiprophosmethyl, oryzalin and trifluralin, all of which show antimitotic properties, affect plant microtubule polymerization and depolymerization. As proposed in [2,3], the action mechanism of these substances in plant cells appears to be through disturbance of the cytoplasmic Ca²⁺ level by interfering with mitochondrial Ca2+ accumulation. Furthermore, Chlamydomonas flagellae regeneration is inhibited by the two fungicides captan and dichlofluanide (C. Fedtke, personal communication). Both substances are reported to react reversibly with thiol-groups of proteins [4,5]. We have found that captan and dichlofluanide inhibit plant mitochondrial Ca²⁺ accumulation (C. H., D. M., unpublished).

In animal cells, the important regulatory function of free cellular Ca²⁺ is well established [6]. Mitochondria may play an important role in the control of free cytoplasmic [Ca²⁺] [7]. The widespread agricultural usage of the above herbicides and fungicides might presuppose their ineffectiveness on animal cells. However, as in plant cells, any disturbance of the free cytoplasmic Ca²⁺ level would cause a disturbance of many biochemical and physiological processes in animal cells which depend on well-balanced cellular Ca²⁺ relationships. Therefore, we have investigated the effects of the herbicide amiprophosmethyl, its structural analogues amiprophos, oryzalin and trifluralin and of the fungicides captan and dichlofluanide on rat liver mitochondrial Ca²⁺-transport.

We show that all of the above pesticides affect rat

liver mitochondrial Ca^{2+} accumulation. The two fungicides are even more effective with this animal system than with plants.

2. Materials and methods

2.1. Chemicals

Amiprophosmethyl, amiprophos, dichlofluanide and captan were obtained as gifts from Bayer AG, Leverkusen. Trifluralin and oryzalin were obtained as gifts from Lilly Res. Labs., (Indianapolis IN). All substances were dissolved in dimethylsulfoxide (DMSO) and added to the assays to give 1% or 4% final conc.

2.2. Preparation of mitochondria

Rat liver mitochondria were prepared as in [8]. Mitochondria from corn (Zea mays L.) were prepared as in [3]. Protein was determined as in [8].

2.3, Ca²⁺-transport measurements

Ca²⁺-uptake into rat liver mitochondria was followed continuously by measuring the spectral changes of arsenazo III as in [9]. Ca²⁺ accumulation into plant mitochondria was determined by the millipore filtration technique [3].

3. Results and discussion

The effects of the herbicides and fungicides on plant mitochondrial Ca²⁺ accumulation are shown in table 1. The data are presented as the amount of pesticide/mg mitochondrial protein which gives 50% inhibition of Ca²⁺ accumulation. From table 1 it is

 $Table \ 1$ $ID_{\mathfrak{so}} \ \ values \ of \ various \ pesticides \ for \ the \ Ca^{2+}\mbox{-accumulation}$ into corn mitochondria

Addition	ID 50 (nmol/mg protein)
Captan	800
Oryzalin	400
Amiprophos	160
Amiprophosmethyl	140
Dichlofluanide	140
Trifluralin	70

obvious that the fungicide captan is the least effective compound in plant mitochondria. The data do not allow us to discriminate between effects of the pesticides on uptake or efflux or both. We had shown that amiprophosmethyl and its structural analogue amiprophos inhibited Ca^{2+} -uptake at 5×10^{-5} M [10]; at higher levels Ca^{2+} efflux is also stimulated [3]. All experiments with plant mitochondria were done with P_i present, as, at the experimental conditions employed, no Ca^{2+} accumulation could be observed without phosphate [11].

We have investigated the effects of the pesticides on Ca²⁺ uptake into rat liver mitochondria in the absence of P_i. Phosphate is not necessary for Ca²⁺ accumulation into animal mitochondria; it enhances Ca²⁺ release [9]. At experimental levels, the pesticides have no effect on Ca²⁺ uptake into rat liver mitochondria (not shown). For the herbicides amiprophos and amiprophosmethyl, this conflicted with the data obtained with plant mitochondria where they do inhibit Ca²⁺ uptake [10]. The effect of the other pesticides on plant mitochondrial Ca²⁺ uptake has not been investigated.

The pesticides do affect the ruthenium red-insensitive Ca^{2+} efflux from rat liver mitochondria. When the organelles are loaded for 15 s with Ca^{2+} in the absence of pesticides and uptake blocked by ruthenium red (1 nmol/mg protein) Ca^{2+} is released at a slow rate only (fig.1, \circ , \circ). If the herbicide amiprophosmethyl and the fungicide captan are added before mitochondria are loaded with Ca^{2+} , in the presence of ruthenium red, they cause an increase of the Ca^{2+} efflux rate (fig.1, \bullet for amiprophosmethyl and \blacksquare for captan). Similar to these two the other pesticides also enhance the ruthenium red-insensitive Ca^{2+} efflux (table 2).

The two fungicides dichlofluanide and captan exert the greatest effect on Ca²⁺ release from rat liver mitochondria, whereas, most obviously for captan,

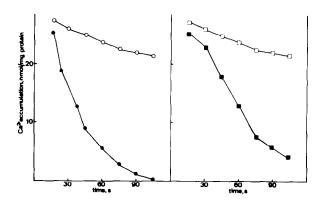


Fig.1. Effects of the herbicide amiprophosmethyl and the fungicide captan on the ruthenium red insensitive Ca^{2+} efflux from rat liver mitochondria. Amiprophosmethyl (200 nmol/mg protein, •) and captan (1 nmol/mg protein, •) were added before Ca^{2+} -uptake. The Ca^{2+} uptake was started by the addition of mitochondria to the assay medium (2 mg/ml). After 15 s the uptake was almost completed. At this time ruthenium red (1 nmol/mg protein) was added to the controls (\circ , \circ) or to the pesticide-treated samples (\bullet , \bullet).

they are much less effective in plant mitochondria (table 1). The herbicides seem to be almost equally effective in plant and rat liver mitochondria.

The increase of the Ca²⁺-efflux by these herbicides and fungicides is observed in the presence of ruthenium red, a specific inhibitor of mitochondrial Ca²⁺-uptake [12]. Since it has been shown that ruthenium red inhibits the Ca²⁺-uniporter also in de-energized mitochondria [13], this rules out the possibility that the effect is caused by a reversal of the electrophoretic Ca²⁺-uniporter; e.g., by a collapse of the transmembrane electrical potential. The pesticides may activate an independent, yet unknown, Ca²⁺-release pathway

Table 2
Amounts of pesticides at which the ruthenium red-insensitive rate of Ca²⁺ efflux from rat liver mitochondria is stimulated 3-fold

Addition	Pesticide (nmol/mg protein)
Oryzalin	200
Amiprophos	125
Amiprophosmethyl	100
Trifluralin	50
Dichlofluanide	40
Captan	10

The pesticides were added before Ca²⁺ uptake; ruthenium red (1 nmol/mg protein) was added 15 s after Ca²⁺ uptake

[13]. An unspecific effect of the compounds on membrane permeability is unlikely as they do not affect the ATP-dependent Ca²⁺-accumulation into a plant microsomal fraction ([3], C. H., D. M., unpublished).

If the herbicides and fungicides are resorbed and are not immediately metabolized in animal cells, they are able to provoke changes of the free cytoplasmic Ca²⁺ level by releasing Ca²⁺ from the mitochondrial stores and thus to interfere with Ca²⁺-dependent biochemical and physiological processes in animals as they do in plants.

Acknowledgements

This work was supported by the Dcutsche Forschungsgemeinschaft (SFB 46, Teilprojekt C 4), by the Stiftung Volkswagenwerk and by the Bundesminister für Forschung und Technologie (01 QV 318-ZA/WF/WRK 0275/5).

References

- [1] Quader, H., Wagenbreth, J. and Robinson, D. G. (1978) Eur. J. Cell Biol. 18, 39-51.
- [2] Quader, H. and Filner, Ph. (1980) Eur. J. Cell Biol. 21, 301–304.
- [3] Hertel, C., Quader, H., Robinson, D. G. and Marmé, D. (1980) Planta 149, 336-340.
- [4] Lukens, R. J. and Sisler, H. D. (1958) Phytopathology 48, 179-234.
- [5] Dittrich, H. H. and Jussinger, O. G. (1969) Z. f. Pflanzenkrankh. Pflanzensch. 76, 651-663.
- [6] Rasmussen, H. (1970) Science 170, 404-412.
- [7] Carafoli, E. and Crompton, M. (1978) Ann. NY Acad. Sci. 307, 269-289.
- [8] Roos, I., Crompton, M. and Carafoli, E. (1978) FEBS Lett. 94, 418–421.
- [9] Roos, I., Crompton, M. and Carafoli, E. (1980) Eur. J. Biochem, 110, 319-325.
- [10] Hertel, C. and Marmé, D. (1981) Eur. J. Biochem. submitted.
- [11] Dieter, P. and Marmé, D. (1980) Planta 150, 1-8.
- [12] Moore, C. (1971) Biochem. Biophys. Res. Commun. 42, 298-305.
- [13] Caroni, P., Schwerzmann, K. and Carafoli, E. (1978) FEBS Lett. 96, 339–342.